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Abstract
Nanographite systems, where graphene sheets of dimensions of the order of
nanometres are stacked, show novel magnetic properties, such as spin-glass-
like behaviours and change of electron spin-resonance linewidths in the course
of gas adsorptions. We investigate stacking effects in zigzag nanographite
sheets theoretically, by using a tight-binding model with Hubbard-like on-site
interactions. We find a remarkable difference in magnetic properties between
the simple A–A-type and A–B-type stackings. For the simple stacking, there
are no magnetic solutions. For the A–B stacking, we find antiferromagnetic
solutions for strong on-site repulsions. The local magnetic moments tend to
exist at the edge sites in each layer due to the large amplitudes of the wave-
functions at these sites. Relations with experiments are discussed.

1. Introduction

Nanographite systems, where graphene sheets of size of the order of nanometres are stacked,
show novel magnetic properties, such as spin-glass-like behaviours [1] and change of ESR
linewidths in the course of gas adsorptions [2]. Recently, it has been found [3] that magnetic
interaction increases with the decrease of the interlayer distance, while water molecules are
attached physically. Here, the change of the interlayer interactions has been anticipated
experimentally, but theoretical studies have not been reported yet.

In this paper, we consider the stacking effects in zigzag nanographite sheets theoretically
[4–6], by using a tight-binding model with Hubbard-like on-site interactions U . In the papers
[4–6], one-dimensional graphite ribbons were investigated. In this paper, we assume that each
graphite sheet has a hexagonal shape with zigzag edges. Such a shape geometry has been used in
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the semi-empirical study of fluorine-doped graphite nanoclusters [7], too. Two stacking types,
namely the A–A and A–B types, shown in figure 1 are considered in the model. We assume
small interlayer interactions t1 where two carbon atoms are adjacent between neighbouring
layers. The circles in figure 1(a) (i.e., nanographite a) and figure 1(c) (nanographite c) show the
sites with the interaction t1, and the interaction t1 is considered at all of the sites in figure 1(b)
(nanographite b). Such interactions preserve the beautiful bipartite property seen in the single
hexagonal layer.

Figure 1. Stacked nanographite with zigzag edges. The bold and thin lines show the first and second
layers, respectively. The stacking is of A–B type in (a) (nanographite a) and (c) (nanographite c),
and it is of simple A–A type in (b) (nanographite b). There are 24 carbon atoms in one layer in
(a) and (b), and there are 54 atoms in one layer in (c). The filled circles in (a) and (c) show lattice
positions with small interlayer interactions t1, and the bold symbols indicate some of the edge
sites in the first layer. The sites, A (B, C, . . . ) and A′ (B′, C′, . . . ), are symmetrically equivalent,
respectively.

The main finding of this paper is a remarkable difference in magnetic properties between
the simple A–A and A–B stackings. For the simple stacking, we have not found magnetic
solutions, because the presence of local magnetic moments is suppressed at the carbons. For
the A–B stacking, we have found antiferromagnetic solutions for U > 2t , t being the hopping
integral in a layer. The local magnetic moments tend to exist at the edge sites in each layer
due to the large amplitudes of the wavefunctions at these sites. Relations with experiments are
discussed extensively.

In section 2, we explain our model. Sections 3 and 4 are devoted to the total magnetic
moment per layer, and the local magnetic polarization per site, respectively. In section 5,
we discuss the local density of states at the edge carbon atoms. This paper is closed with a
summary in section 6.
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2. Model

We study the following model with integrals for hopping between orbitals of carbon atoms and
on-site strong repulsions of the Hubbard type:

H = −t
∑

〈i,j〉: intralayer

∑

σ

(c
†
i,σ cj,σ + h.c.) − t1

∑

〈i,j〉: interlayer

∑

σ

(c
†
i,σ cj,σ + h.c.) + U

∑

i

ni,↑ni,↓

(1)

where ni = c
†
i,σ ci,σ for σ = ↑ and ↓; ci,σ is an annihilation operator of an electron at the

ith site with spin σ ; the first sum is taken over the nearest-neighbour pairs 〈i, j〉 in a single
layer of the nanographite; the third sum is taken over sites where the distance between the
two positions of the neighbouring layers is shortest; t1 is the strength of the weak hopping
interaction between neighbouring layers; the positions of t1 are shown by the filled circles in
figure 1(a) (nanographite a) and figure 1(c) (nanographite c); the interaction t1 is considered
at all of the sites in figure 1(b) (nanographite b); and the last term of the Hamiltonian is the
strong on-site repulsion with the strength U .

The finite-size system, whose spatial dimension and number of stacked layers are relevant
to the structural unit of the activated carbon fibre (even the present size ∼10 Å is a little
smaller than the experimental size ∼40 Å), is diagonalized numerically using the periodic
boundary condition for the stacking direction, and we obtain two kinds of solution. One of
them is a non-magnetic solution where up- and down-spin electrons are not polarized in each
layer. This kind of solution can be found in weak-U cases. The other kind of solution is
an antiferromagnetic solution, where the number of up-spin electrons is larger than that of
down-spin electrons in the first layer, the number of down-spin electrons is larger than that of
up-spin electrons in the second layer, and so on. This kind of solution is realized in strong-U
regions. There will be cases of incommensurate spin-density waves, but we have not obtained
such solutions, because we chose initial magnetic ordered states which are commensurate with
the one-dimensional lattice in the stacking direction at the first stage of the numerical iteration
process. We have discussed the antiferromagnetism in C60 polymers previously [8]. The same
technique (unrestricted Hartree–Fock approximation) as was used in reference [8] is found to
be effective in this paper, too.

The parameters are changed within the ranges 0 � t1 � 0.5t and 0 � U � 10t . The
real value of t1 is estimated to be about 0.1t at most, but we change this parameter for more
extended regions in order to look at the behaviours of solutions in detail. The number of
electrons is the same as the number of sites, assuming half-filling of electronic states. All of
the quantities with the dimension of energy are reported in units of t (∼2.0–3.0 eV).

3. Magnetic moment per layer

First, we consider the total magnetic moment per layer for the nanographites a and b. Figure 2
shows the absolute value of the total magnetic moment per layer as functions of t1 and U .
Figures 2(a) and 2(b) are for nanographite a, and figure 2(c) is for nanographite b. (See the
figure caption for the value of U for each plot.) Figure 2(a) shows the overall variations of the
magnetic moment. When U is small, there appears a finite magnetic moment for the values
of t1 larger than the threshold of the phase transition. At U = 2.5t , the magnetic moment
changes as a parabolic function with respect to t1. The magnetic moment decreases for larger
U : U = 3.0t , 5.0t , and 10.0t . This is due to the strong singlet correlation at the bonds t1
with respect to the change of the Heisenberg coupling between the neighbouring layers as
t2
1 /U . Figure 2(b) shows the details around the phase transition for 1.8t � U � 2.3t . With
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Figure 2. The magnitude of the total magnetic moment per layer as functions of t1 and U . Parts
(a) and (b) are for nanographite a, and part (c) is for nanographite b. In (a), the values of U are
U = 1.5t (filled squares), 2.0t (open squares), 2.5t (filled circles), 3.0t (open circles), 5.0t (filled
triangles), and 10.0t (open triangles). Part (b) shows the details around the phase transition: the
values of U are U = 1.8t (filled squares), 1.9t (open squares), 2.0t (filled circles), 2.1t (open
circles), 2.2t (filled triangles), and 2.3t (open triangles). In (c), the magnetic moment is zero for
0 � U � 10t .

increasing U , the magnitude of the magnetization increases. The magnetic moment is zero in
the smaller-t1 region for U = 1.8t , 1.9t , 2.0t , and 2.1t . The magnetic moment is zero only at
t1 = 0 for U = 2.2t and 2.3t . We can understand the parabolic curves as indicating a change
due to the Heisenberg coupling proportional to t2

1 /U . The antiferromagnetic solutions actually
exist for larger-U regions in the A–B stacking case. On the other hand, figure 2(c) shows the
magnetic moment for the simple stacking. There is no magnetization for 0 � t1 � 0.5t and
0 � U � 10t . This absence of magnetization is related to the non-magnetic solution for
the single nanographite sheet. The magnetic solution for the single sheet is not favoured in
the A–A stacking case. This shows a remarkable difference between the simple A–A and
A–B stackings, and is a new finding of this paper. There is no clear evidence as regards which
stacking is realized experimentally [3]. However, we believe that the A–B stacking should exist
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in nanographite systems because exotic magnetisms have been observed in recent experiments
[1–3]. The increase of the magnetic interaction during attachment of water molecules [3] is
induced by the decrease of the interlayer distance, which enhances the interaction strength t1.

Next, figure 3 shows the absolute value of the magnetic moment per layer for nanographite
c with A–B stackings. The number of carbons in a layer is 54, and this is more than twice
as large as that for nanographite a. Figure 3(a) shows the change of the magnetic moment
for wide parameter regions, and figure 3(b) displays the numerical data around the phase
transition. The overall behaviours for smaller and larger U seem similar to those of figure 2.
The characteristic value of U decreases from that of figure 2. For example, the curve becomes
parabolic for U � 2.2t in figure 2(b), and it becomes parabolic for U � 2.0t in figure 3(b).
Such quantitative difference is due to the effects of the larger system size.

Figure 3. The magnitude of the total magnetic moment per layer as functions of t1 and U for
nanographite c. In (a), the values of U are U = 1.0t (filled squares), 1.5t (open squares), 2.0t

(filled circles), 2.5t (open circles), 5.0t (filled triangles), and 7.0t (open triangles). Part (b) shows
the details around the phase transition: the values of U are U = 1.2t (filled squares), 1.4t (open
squares), 1.6t (filled circles), 1.8t (open circles), 2.0t (filled triangles), and 2.2t (open triangles).

4. Local magnetic polarization in a layer

In order to give further insight into the mechanism of the magnetism, we will look at the
local magnetic moments which depend on the carbon sites in each layer. We particularly pay
attention to the local magnetism near the edge sites of the nanographite [4–6].

Figure 4 shows the local magnetic moment at the edge sites of nanographite a. The values
of U are U = 2.1t and 2.5t in figures 4(a) and 4(b), respectively. In the former case, there is
a point of phase transition near t1 = 0.25t , and a finite magnetization appears for non-zero t1
in the latter case. The filled squares, open squares, and filled circles show the results at sites
A, B, and C, respectively. Due to the symmetry, the magnetic moments at the sites A′, B′, and
C′ of figure 1(a) are equal to those of the sites A, B, and C. Figure 5 displays similar plots for
nanographite c. The parameters are U = 1.8t and 2.5t in figures 5(a) and 5(b), respectively.
We see that the local magnetic moment is negative along the edge A–A′ in figure 1(a), and
also along the edge A–B–A′ in figure 1(c). The local magnetic moment is positive along the
neighbouring edges: namely, the edges B–C and B′–C′ in figure 1(a), and the edges C–D–E
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Figure 4. The local magnetic moment at the edge sites of nanographite a. The values of U are
U = 2.1t in (a), and 2.5t in (b). The filled squares, open squares, and filled circles show the results
for sites A, B, and C, respectively.

Figure 5. The local magnetic moment at the edge sites of nanographite c. The values of U are
U = 1.8t in (a), and 2.5t in (b). The filled squares, open squares, filled circles, open circles, and
filled triangles show the results for sites A, B, C, D, and E, respectively.

and C′–D′–E′ in figure 1(c). Such positive/negative alternations of magnetic moments are seen
in the calculations for both nanographites a and c. Because there are strong amplitudes of
the wavefunctions at the zigzag edge sites [4–6], the local moments near these edge carbon
atoms tend to become larger. In the A–B stackings, there is no interlayer interaction t1 at the
edge sites, and this gives rise to the finite magnetic moment per layer which was discussed
in the previous section. On the other hand, the local magnetic moment and also the magnetic
moment per layer do not appear in the simple A–A stacking case, namely that of nanographite
b of figure 1(b), owing to the interlayer interactions t1 which are present between all the nearest
carbon atoms of neighbouring layers. This difference is the origin of the lack of magnetization
in the simple stacking case reported in figure 2(c).
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In the band calculations for the stacked nanographite ribbons [9], the strong hybridization
between edge states occurs in the A–A stacking case. Such hybridization is weak in the A–B
stacking case. The strong localization of wavefunctions at the edge carbon sites persists in
the band calculations for systems with the A–B stacking [9], and this property agrees with the
present result.

5. Density of states

In this section, we discuss the local density of states at the edge sites. The wavefunctions of
electrons with up and down spins are projected on the edge sites of nanographite a and c. The
local density of states is reported together with the total density of states.

Figure 6 shows the density of states of nanographite a, and figure 7 displays the result
for nanographite c. The total density of states per layer and per spin is shown by the bold
line. The local density of states at the edge sites is shown by the thin and dashed lines for the
up and down spins, respectively. The up and down splitting typical for antiferromagnetism
is seen in both figures. Because the number of edge sites is one third of the total number of
carbon atoms in nanographite a, the areas between the lines and the horizontal axis also have
this relative ratio. In nanographite c, the proportion of number of edge sites with respect to
total number of carbon atoms becomes smaller. Therefore, the relative area below the thin and
dashed lines becomes smaller in figure 7. In one-dimensional graphite ribbons [4–6], there
appears a strong peak due to the localized edge states at the Fermi energy. This is seen in the
non-interacting case. With interactions taken into account, such edge states split into bonding
(occupied) and antibonding (unoccupied) states. This will be one of the reasons that such a
strong peak is not observed in figures 6 and 7. Also, in the present case, the edge sites do not
make a one-dimensional lattice and each layer has a finite spatial dimension. This difference
is another reason for the absence of a strong peak.

Figure 6. The density of states per layer for nanographite a. The parameters are t1 = 0.4t and
U = 2.1t . The bold line shows the density of states over 24 carbon atoms per layer and per spin.
The thin and dashed lines indicate the densities of states over the eight edge sites in a layer for the
up and down spins, respectively.
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Figure 7. The density of states per layer for nanographite c. The parameters are t1 = 0.4t and
U = 1.8t . The bold line shows the density of states over 54 carbon atoms per layer and per spin.
The thin and dashed lines indicate the densities of states over the twelve edge sites in a layer for
the up and down spins, respectively.

6. Summary

In summary, we have investigated the stacking effects in zigzag nanographite sheets
theoretically. We have found a remarkable difference in magnetic properties between the simple
A–A-type and A–B-type stackings. For the simple stacking, there are no magnetic solutions.
For the A–B stacking, we find antiferromagnetic solutions for strong on-site repulsions. The
local magnetic moments exist at the edge sites due to the large amplitudes of the wavefunctions
at the zigzag edge sites. The A–B-type stacking is favourable to the observation of exotic
magnetism in nanographite systems.
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